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Abstract/Résumé 

This contribution aims to illustrate the nature of the observation - modeling (or real - virtual) link, the importance of the exact model (or coupled 
model) in the matching involved in this link and the use of this link in the supervision of complex procedures. This involves offline and real-
time matching practices. The offline case is mainly about the management and ruling of elegant theories and computational tools mimicking 
physical paradigms. Real-time pairing notably concerns natural phenomena, autonomous automated systems and complex procedures. The 
paper assess, analyze and discuss the different elements mentioned. This is aided by a literature review. 

Cette contribution vise à illustrer la nature du lien observation - modélisation (ou réel - virtuel), l'importance du modèle exact (ou modèle 
couplé) dans l'appariement impliqué dans ce lien et l'utilisation de ce lien dans la supervision de procédures complexes.  Cela implique des 
pratiques de mise en correspondance hors ligne et en temps réel. Le cas hors ligne concerne principalement la gestion de théories élégantes et 
d'outils informatiques imitant des paradigmes physiques. L'appariement temps réel concerne notamment les phénomènes naturels, les systèmes 
automatisés autonomes et les procédures complexes. Le document évalue, analyse et discute les différents éléments mentionnés. Cela est assisté 
par une revue de la littérature. 
1 Introduction 
Cognitive inference or virtual modeling can account for the observation of an object, phenomenon or procedure. 
Pairing or mirroring an observable and its virtual image has been, and still is done in many natural and man-made 
situations. Humankind, other creatures and natural elements often exercise the practice of observation, experience 
or sensory manipulation. At the same time, from this practice, they will eventually use deductive (or mimesis) 
skills to manage their evolution, self-protection, comfort, and survival. The activity of deduction associated with 
observation is one of the first natural duties born in the world. Deduction, prediction, or reasoning (modeling) 
associated with observation may be encountered in inherent natural events or manufactured procedures. Such a 
couple often works according to a process of pairing or imitation. For example, in nature, based on observation, 
cases of mimetic simulation (imitation strategy) are very frequent allowing camouflage [1]. This permits creatures 
to blend into their surroundings. This could involve simple matching or dynamic (adaptive) matching.  

Both cases of link observation-modeling involving offline and online matching can be used in distinct matching 
categories. The offline one can be practiced in managing universal elegant theories involving their validation, 
explanation and unification. The online matching procedures of the link observation-modeling are practiced in 
various natural processes and artificial modern applications related to the supervision of automated and complex 
systems. In these applications, we need to reduce the involved uncertainties to achieve an optimized supervision. 
Such reduction is mostly needed in the virtual side of the link. Thus, we need accurate realistic system models, 
which can be obtained by reintegrating neglected items committed in idealizing for elegance of theories. Such 
coupled models permit optimized matching of the link observation-modeling. We see that the matching in the link 
is closely associated to elegant theories and coupled models, respectively for offline theories managing and online 
systems supervision.   

Indeed, the foundation of basic research is built on elegant and consistent theories, which is essential for science. 
Let us illustrate the notion of elegance in the theories that belong to fundamental science. When a theory or model 
clearly and directly describes a phenomenon, it is said to be elegant. Additionally, an easy-to-understand enterprise 
can capture a lot of information and answer many questions. Therefore, the definition of elegance as simplicity 
plus greater capacity seems fair. Note that this last statement is valid only when the theory is applied in its strict 
scope. One of the most famous elegant unified theories is Maxwell's set of equations [2]. The case of Maxwell's 
equations illustrated the interest of the concept of elegance. However, later in this article in the application to 
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electromagnetic systems, we will see that in real systems, Maxwell's equations could not always be applied 
immediately and such elegance could conflict with real applications. In such cases, one must make a volte-face 
from elegance to reality by reconsidering the corresponding committed approximations. We are therefore inclined 
to modify the model based on the theory of the main field, by combining the secondary fields in a modified coupled 
model [3]. Such a modified model resulting from “retrograde postulations” seems paradoxically to represent the 
real context. Note that coupled models belong to applied science. 

Many recent innovative technological processes use the concept of matching physical (observable) operations with 
their (virtual) mirror models. Matching depth is closely related to the fidelity of the virtual model to the real 
physical object. Such consistency implies the nature and ability of the model to take into account the variation of 
the physical element due to its operational and environmental conditions [4]. Therefore, a complete model taking 
into account all the phenomena governing these conditions becomes necessary and the model uncertainty involved 
in such a circumstance will be of knowledge type. Currently, in very promising fields, where the large number of 
creations and the growing importance of digital components in automated assemblies offer an opportunity to reach 
higher levels of production [5]. The practice of digital technologies allows the virtual projection of products and 
processes [6]. The combination of physical and virtual elements can be achieved through the concept of matching 
physical operations with their mirror models - digital twin (DT). DT is gradually being studied as a means of 
improving the functioning of physical units by taking advantage of the computational practices made possible by 
those of virtual pairing. Bidirectional links feed data from the physical element to its virtual image, and process it 
from the latter to the physical element [7]. This matching sequence (pairing) is a kind of mirroring of real and 
virtual elements. The virtual one allows various specific tasks of simulation, test, optimization... [8]. Since Michael 
Grieves introduced the concept of digital twins in 2002, which has quickly taken hold in various fields; the number 
of publications on its applications has increased significantly. 

This contribution aims to illustrate the nature of the observation - modeling link and its relation with elegant 
theories and coupled models. First, we analyze the role of this link in the managing of elegant universal theories. 
Then we discuss the relation of these smart theories and coupled models. At the last part of the paper, we illustrate 
the importance of coupled models in the real-time matching involved in this link and its use in the supervision of 
complex procedures. 

2  Characteristics of the link Observation-Modeling 
This section aims to examine how the two elements of observation and theory each support and mutually form a 
duo. Thus, we examine how they are complementary and evaluate their actions in the management of universal 
theories involving validation, explanation and unifying capacities. Finally, we discuss advanced computational 
tools mimicking the physical paradigms ruled by the duo. All the observation-theory duo activities discussed in 
this section fall under offline matching practices. 

2.1 Managing of Smart Theories 

• Observation and Theory Complementarity 

Observation or theoretical modeling can be self-ruling in areas of investigation that are consistently seen as 
standards. However, in widespread cases, we use the two items in a complementary way. Therefore, yet in a 
domain that customarily necessitate observation, it is generally not autonomous and it requires modeling for further 
investigation. Structural research in social sciences is typical example in this category; see e.g. [9], In addition, in 
a field currently requiring theoretical modeling, it is not regularly either autonomous and it requires to be validated 
by observation, simply to be reliable [10 ], as we will see in next lines. 

• Validating or Invalidating a Theory by Observation 

In general, a theory is only thought to be established after it has been verified by observation. Furthermore, such a 
theory stays true until inconsistency with another observation.  

Validation of the Theory of Superposition States in Quantum Mechanics 

Considering the case of the “theory of superposition states” in quantum mechanics proposed by Schrödinger in 
1926 [11], (Nobel 1933). In this theory, the wave function provides the probability of locating a particle at a 
specific position. Wineland's ion traps [12] and the cavity quantum electrodynamics of Haroche [13] validated this 
theory a little before 2000 (Nobel 2012: for revolutionary experimental methods, which make it possible to 
measure and manipulate individual quantum systems). It was only after such validation that this theory was 
established until a possible future invalidation. 

Partial Invalidation of the Treatise of JC Maxwell by the Hall Effect 
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Concerning the "Hall Effect" proposed by Hall in 1879 that resulting from experiment; it concerns the relation 
between the force and the current in a conductor. It invalidates part of the "treatise on electricity and magnetism" 
proposed by Maxwell in 1873 [14]. Hall revealed and experimentally confirmed in his thesis work, the effect of 
force on current (distribution) in a conductor immersed in a magnetic field [15]. Maxwell thought there was no 
such effect. 

• Observation Confirmed and Explained Later by Theory 

One can meet the situation of first reaching a finding from experiment and then establishing the theory explaining 
and confirming such discovery. Generally, we come across such a situation in a "serendipity condition ": we find 
something while looking for another. A typical illustration is the revealing of superconductivity phenomenon by 
Kamerlingh Onnes (1853-1926), (Nobel 1913: for his investigations on the properties of matter at low temperatures 
which led, inter alia, to the production of liquid helium) [16]. In this context, he was studying the problems 
connecting to the effects of low temperatures on electronics. He could not imagine the phenomenon he observed. 
All the theories confirming and explaining the superconductivity phenomenon followed his discovery. 

• Generalizing and Amalgamating Observations by a Theory 

Several characteristics can distinguish intelligence of theories such as enhancement, generalization, and fusion. 
An example of such intelligence can be seen in Maxwell's equations, which are an illustration of the highest elegant 
composite theories. These equations originated by James Clerk Maxwell (1831-1879) incorporate an association 
of three laws that are obtained experimentally, discovered by three of his predecessors. They are Carl Friedrich 
Gauss (1777-1855), André-Marie Ampère (1775-1836) and Michael Faraday (1791-1867). The unification of 
Maxwell's equations was possible only because Maxwell remarked how to progress from the three experimental 
laws, introducing into one equation a missing link, the announced displacement current, the occurrence of which 
guarantees consistency of the integrated organization [2, 14]. 

2.2 Innovative Computing Tools Imitating Physical Paradigms 

Neuromorphic and quantum computing technologies are two constructed tools based on imitations of physical 
systems. These two modeling tools originate straight from two paradigms belong to neurosciences and quantum 
physics. 

• Neuromorphic Computing 

The brain is an exceptionally intricate organization that performs tasks much quicker than the swiftest digital 
computers. Neuromorphic computing uses inspired models of the brain built on biologically replicated or artificial 
neural networks. Neuromorphic computers can perform complex calculations quicker, with greater power 
efficiency and lesser size than traditional architectures. They have the capacity to expand trained real-time learning 
algorithms to work online like real brains. This showed potential due to the similarities of biological and artificial 
neural networks (BNN and ANN) [17]. The rising request of deep learning and neural networks has stimulated a 
sprint to advance artificial intelligence (AI) hardware devoted to neural network calculations [18]. These tools are 
broadly operated in optimization, diagnostics, images, machine learning, AI, etc. 

• Quantum Computing 

The notion of states in quantum mechanics is the base of “quantum computers”, a term created by Richard 
Feynman [19]. A typical computer uses transistors to process information in sequences of zeros and ones (binary 
mode). A quantum computer uses qubits according to the rules of quantum mechanics connecting to particle states. 
For a qubit, a particle can be in several states simultaneously, as well, a different phenomenon affects particle 
states called entanglement. This means that when two qubits in a superposition meet; signifying the state of one 
depends on the state of the other. Due to these phenomena, a quantum computer can achieve 0, 1, or both states at 
the same time for a qubit or a qubit entanglement. Thus, an n-qubit quantum computer can work instantaneously 
on the 2n possibilities; however, a standard computer with n bits can only operate on one of these 2n possibilities 
at a time. Therefore, the former gives us more processing power. Scientists agree that quantum computers are 
theoretically exponentially faster and much smarter at cracking codes that are apparently unfeasible for classical 
technology [20, 21]. 

3 Idealized Smart Theories and Coupled Models 
This section aims to analyze and discuss the characteristics of elegant theories and realistic coupled models. Often, 
the notion of elegance belongs to the philosophy of science. On the other hand, in the present article we specify 
that the use of the term of elegance of theories concerns fundamental sciences whereas that of coupled models 
concerns applied sciences. 
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3.1 Smart Theories and Postulations 

Let us consider a real physical problem which could be represented by the field A which, is the union of the 
functions B, C, D… which depend on the variables x, y, z… Each of these functions relates to a different domain 
of science. On the other hand, often a domain is more concerned by the problem studied than the others are, let us 
call it the main domain and represent it by the function B in (1). If we allow that the main domain B can represent 
the real problem, (2) will give this approximation A1. Moreover, founding coherent and elegant theories usually 
requires postulations that compress and idealize the real context resulting in A2 given by (3). 

                      A: B(x, y) ∪ C (y) ∪ D (z)….   (1)                      
A1: B(x, y)               (2)                    

  A2: B(x)               (3)
 

Note that the validation of this elegant theory given by A2, which allows its foundation, must also be done under 
these postulation conditions. 

Therefore, when we model a real problem using main domain idealized theory, the result would often be erroneous. 
This is due to committing two approximations. The first is relative to overlooking the other domains influences 
(replacing A by A1) and the second is due to the use of idealizing postulations (replacing A1 by A2).The more these 
two approximations are unfounded vis-à-vis the real setting, the obtained results will be far from the reality. In 
such a case, in order to adjust this situation, we have to track a reverse procedure that to re-integer in the model, 
via coupling, all the ignored aspects subsequent to the used approximations. Concerning the reduction from 
expressions (1) to (3), one can study a given problem from different aspects corresponding to different reductions 
involving different approximations. This depends for a multi-domains problem, on the investigated domain. For 
example, we will consider a problem involving thermal and biological domains. When studying thermal 
performance, one may tend to introduce biological approximations for reduction and reciprocally. 

3.2 Revised Coupled Models and Solution Strategy 

The reverse procedure mentioned in the last section will go through a kind of revised model comprising the main 
theory associated with the other theories involved and reintegrating into the model all the characteristics ignored 
in the idealizing action. In general, coupled problem schemes involve the mathematical solution of equations 
governing different natural or artificial phenomena belonging to distinct branches of the theoretical sphere. The 
nature of the behaviors of these phenomena and their interdependence as well as the proximity of their temporal 
evolution (time constants) are directly linked to the approach of solving the corresponding governing equations. 
Each of these behaviors can be linear or non-linear and have a low or high time evolution. Moreover, these 
behaviors can be independent or interdependent, which may or may not be linear. At one extreme, we have the 
case of independent linear behaviors with very distant time constants. In this case, we can solve the governing 
equations individually. At the other extreme, we have the case of nonlinear and, nonlinearly interdependent, 
behaviors with very close time constants. In this situation, we need a strongly coupled simultaneous solution of 
equations. Between these two extremes, the equations can be solved in consecutive progression mode by iteration 
according to the severity and the degree of complexity of the behaviors. 

Moreover, in general, the nature of the source, the behavior of the matter and the geometry concerned in the real 
problems are more complex than, those envisaged in a smart theory. Therefore, the spatial and temporal behaviors 
of the different variables in the corresponding equations are also more complicated compared to elegant theories. 
Such a complex system of equations does not allow analytical solutions. In order to apply correctly the theories, it 
is often necessary to consider a discretized form in space and time of the equations. In this case, the theories will 
operate locally in finite discrete domains for which the global assembly solution will operate in the discretized 
time domain. Spatial local non-linearity and temporal evolution are considered by iterative procedures. 

3.3 Case of Electromagnetic and Energy Conversion Systems 

For a better understanding of the problem addressed in the last section, we will consider an application in the field 
of electromagnetic systems (EMS) including energy conversion drives. These are present in many societal 
applications such as mobility, health, security, communication, etc. In these systems, the intelligent management, 
conversion and supervision of energy involve the use of an accurate realistic representation of the arrangement 
concerned. A revised realistic coupled model achieves this goal through its use in system design, optimization, 
and control. The main field in such a case is electromagnetic (EM), which is governed by Maxwell's equations. 
However, EMS generally behave in four territories: electrical, magnetic, mechanical and thermal. 
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• Maxwell Equations 
This system of equations can be formulated mathematically in different forms depending on the problem under 
consideration. One of the most common is the basic full-wave electromagnetic formulation given by: 

   ∇ × H = J                                                                     (4) 

    J = σ E + j ω D + Je                                                                            (5)                            

     E = − ∇ V – j ω A                                                                                (6)                                                 

      B = ∇ × A                                                                                             (7)                                        

Where H and E are the magnetic and electric fields, B and D are the magnetic and  electric  inductions, A and  V  
are  the  magnetic  vector  and  electric  scalar potentials. J and Je are the total and source current densities, σ is 
the electric conductivity and ω is the frequency pulsation. The symbol ∇ is a vector of partial derivative operators, 
and its three possible implications are gradient (product with a scalar field), divergence and curl (dot and cross 
products respectively with a vector field). The magnetic and electric behavior laws respectively between B/H and 
D/E are characterized respectively by the permeability μ and the permittivity ε. 

The solution of the equations (4 -7) permits to determine in a system the concerns of electromagnetic fields for a 
frequency pulsation accounting for the magnetic materials behaviors through the permeability, for eddy currents 
in electric conductors through the electric conductivity and for behavior of dielectrics through the permittivity. 
Often, EMS involve other fields than EM. In some cases, the influence of these other fields could be negligible 
and it will be then possible to solve the problem correctly with only the Maxwell's equations. In general, to model 
an EMS we need to account for other fields in addition to EM field through coupling of the corresponding 
governing equations. As mentioned before, EMS behave under four phenomena: electrical, magnetic, mechanical, 
and thermal. The first three have small and relatively near time constants while the thermal phenomenon has a 
relatively higher time constant. The different mixtures of these phenomena can be classified into causal (system 
behavior), integrated (electrical and magnetic) and intrinsic material (functional). The last mainly concerns 
intelligent materials such as magnetostrictive, electrostrictive, shape-memory, thermoelectric...  

• Coupling and Solution of Equations in EMS 

The solution of the equations of the events involved must take into account different specifications. The nature of 
the behavior of the system concerned, involves analyses either in the frequency domain or in the time domain. The 
fact that EMS often have complex geometries and involve materials with nonlinear laws of behavior implies going 
through a local distribution of variables such as, fields, potentials… For this purpose, we use 2D or 3D discretized 
geometric cells, with conditions defined on the boundaries of the discretized domains, see e.g. [22,23]. The above-
mentioned categories of couplings are detailed as follows. 

Integrated Coupling 

Generally, in EMS the current is delivered by a voltage source through an external electric circuit. The general 
relation between the voltage v and the current i in the circuit is given by: 

                                      v = 1/C. ∫ i dt + r i + L. di/dt + dΨ/dt + ᴕ                                 (8) 

In this expression r is the total resistance of the circuit, L a linear inductance, C a capacitance, ᴕ a non-linear 
voltage drop (e.g. a diode) in the electrical circuit and Ψ the implied flux linkage. 

This circuit equation should be solved coupled with the EM equations. Therefore, the equations to solve are (4 - 
8). This coupling between the EM domain and the external electric circuit is particular regarding other couplings 
with other domains than EM because it represents a “correction” inside the EM domain. We call it integrated 
coupling. Generally, the coupling of EM domain with the external electric domain needs simultaneous strong 
solution of the equations due to non-linearity of behaviors and closeness of the magnetic and electric time 
constants, see e.g [24]. 

Causal Couplings 

This class of couplings is related to system behavior. Typical situations in this category are the EMS that governed 
by EM domain, where the operation, the source or the outcome is directly related to another domain. Most of EMS 
related to energy conversion stand in this category; for instance, the mechanical source or outcome respectively in 
electric generators, e.g. [25] or motors e.g. [26]. These cases may involve behavioral alterations in the EM and 
other areas modified by each other. This happens when the behaviors are interdependent. The solution of the 
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equations for a given EMS would be separate, iterative or strongly coupled, as mentioned before, depending on 
the severity of the behaviors. 

EM and Mechanical Coupled Problem 

We consider the case of an EMS where beside EM the mechanical domain is involved in forms of displacement 
or deformation. Let us consider the example of the typical electromagnet given in figure 1, which is a characteristic 
EMS involving electro-magneto-mechanical aspects permitting to illustrate the consideration of these different 
domains [27]. It consists of a stationary part constituted of non-conducting magnetic material (μ) and a mobile 
armature of conducting magnetic material (μ, σ). A coil fed by a voltage source excites the stationary part. The 
mobile armature is connected to a spring, a damper and an external force. The equations governing such a system 
are: 

                                     m. d2 X/dt2 + c. dX/dt + k X = Fmag + Fext                                         (9) 

                                     dΨ/dt + r I = U                                                                                   (10) 

In these equations, U is the source voltage and I the current in the exciting coil. X is the displacement, Fmag and 
Fext are the magnetic and external forces, m, c and k are respectively the mass of the moving object, the damping 
coefficient and the stiffness of the spring. It may be noted that (10) is a particular case of (8). 

We consider for example in the system in figure1 a step source voltage in the exciting coil. The unknown variables 
are the current I across the coil and the displacement X of the mobile armature. The magnetic linkage flux Ψ and 
the magnetic force Fmag generally could be nonlinear function of the magnetic saturation and the mechanical 
motion. To solve the problem we have to consider the equations (4 -7) with the mechanical and circuit equations 
(9 -10). Generally, the coupling of EM domain with the mechanical domain needs simultaneous strong solution of 
the equations due to non-linearity of behaviors and closeness of the time constants.  

EM and Thermal Coupled Problem 

We consider the case of EMS where in addition to EM the thermal domain is present in the form of heating 
production [28] or resulting undesirable heating [29]. Heat production by means of EMS can be magnetic induction 
heating by eddy currents in conducing metals owning high conductivity or electric induction microwave heating 
in dielectric materials possessing high permittivity [30]. The coupling of EM and thermal domains involves 
phenomena with very different time constants. Moreover, the problem may include non-linear behaviors and/or 
variables that are interdependent. Here we need a weak separately iterative coupling. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic of an electromagnet involving Electro-Magneto-Mechanical aspects.  

Material Intrinsic Couplings 

This class of couplings is relative to functional nature regarding material intrinsic interactions. These concern 
mainly smart materials that each linking two phenomena: magnetostrictive (magnetic-mechanic), electrostrictive 
(electric-mechanic), shape-memory (thermic-mechanic), and thermoelectric (thermic-electric). 

The couplings in these cases relate to two groups. The first reflects linear behavior (electrostrictive) and/or very 
different time constants (shape-memory, thermoelectric). In this case, we can practice separate solutions or coupled 
iterative solutions for respectively independent or interdependent behavior [31,32]. The second concerns non-

MOVING (X) 

MAT.  μ, σ      MASS m      Fmag  

FIXED 

MAT.   μ     Ψ  

SPRING (k) 

DAMPER(c) 

EXCITATION U, I, 

dΨ/dt , r 



7 
 

linear behavior and/or close time constants (magnetostrictive). In function of the complexity of the nonlinear 
relationships, we use strong coupling or multiscale methodologies [33,34]. 

• Supervised Energy Conversion Systems 

Energy conversion drives are frequently used in a wide range of applications ranging from small household 
appliances of a few watts to heavy industrial needs in megawatts, including mobility, medical, robotics 
applications…. These drives are supervised in several ways depending on the nature of the application in terms of 
required accuracy and required response time, ranging from slow to instantaneous; see e.g. [35-37]. In any case, 
we need the most accurate model of the drive involved in the control, which allows efficient and robust supervision. 
These energy conversion devices can be involved in simple automated systems or in complex supervised adaptive 
and dynamic procedures. This topic will be discussed in the next section. 

4 Online Matching of the Observation-Modeling Pair 
In Section 2, we surveyed the virtues of offline observation-modeling pairing. This duo is actively involved in 
many natural and artificial processes operating in online (real-time) pairing mode. This concerns both simple 
automated systems and complex procedures.  

4.1 Automated Procedures 

Automated systems are used in various fields related to energy, industrial manufacturing, mobility, health… In 
various automated procedures, sensors are commonly used to determine specific operating variables and system 
parameters. However, in some situations, estimation can be used for variables or parameters that are difficult to 
measure. Accurate parameter estimation plays a crucial role in the operation of automated systems. The 
implementation of an estimation algorithm on an embedded controller platform requires the simplification of the 
mathematical model of the system. That is why we often have to do this estimation offline to get reasonable 
accuracy. For this, one can use Computer Aided Design (CAD) tools based on complete models representing the 
systems in their environments (see section 3.3). In such a case, the matching of the estimated parameters with the 
actual parameters would be successful. However, the problem is that pairing cannot be instantaneous with the 
system running. Various studies have proposed a compromise between the precision of the estimation and the 
speed of the matching by implementing, more sophisticated algorithms, on specialized platforms of embedded 
controllers [35-37]. For this, in automated systems, different types of observers, state filters and controllers are 
offered as estimators. The robustness of the controller is supported by the use of adaptive methods. Large-capacity 
microcontrollers can improve controller board design and software required for estimation, which iteratively 
targets the match simultaneously.  

4.2 Observation-Modeling Pairing in Complex Procedures 

Real-time pairings in complex processes are present in different natural circumstances practiced or involved in 
functions. In addition, online matching of complex procedures is used in many innovative applications. 

• Modeling Matching Observation in Natural processes 

As mentioned in Section 1, creatures often engage in the practice of sensory observation and simultaneously use 
deductive skills to manage their natural lives. Also that the activities of deduction and prediction associated with 
observation are one of the first natural duties born in the world.  In this section, we will discuss and analyze two 
natural processes, the dynamic adaptive camouflage in ecology and the Bayesian Brain theory in neuroscience. 

Dynamic Camouflage 

In nature, based on observation, cases of mimetic simulation (imitation strategy) are very frequent allowing 
camouflage [1]. This permits creatures to blend into their surroundings. It may be a predation strategy or an anti-
predation adaptation. It relates to camouflage and imitation that may involve visual, olfactory or auditory cover-
up through sensory systems. There are two main categories of camouflage. A form of camouflage consists in the 
selection of a support, of the environment on which to “land” or/and “disappear”. The second form of camouflage 
is that of dynamic metamorphosis. The first corresponds to choose a matched environment in a single step, and 
the second corresponds to a self-adapting (transfiguration) dynamic matching. Thus, we have an offline matching 
resulting from a single observational imitation in the first case and an online dynamic adapting matching in the 
second. There is a significant literature regarding the multiplicity, processes, roles, and evolution of camouflage, 
which is measured by the sensory systems of predators targeted by camouflage; see e.g. [38,39]. This depends on 
the ability of predators to identify the impacts of predation-enforced selection, where changes in environmental 
characteristics can be quantified. The victim needs, even if it is complex, to identify changes in the visual systems, 
cognition and behavior of predators. Just as any victim often uses multiple forms of encryption; it is likely that 
their predators have multiple ways to defeat them, in response to multiple types of prey. Indeed, the mimetic victim 
individual adopts the appearance and colors of its environment and remains motionless so as not to be detected by 
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its predators. In addition to color, some organisms are also able to take on the shape of their viewpoint object. 
Many insects can thus take on the appearance of branches or leaves. This defensive imitation gives the individual 
protection against predation. There are also cases of offensive imitation, which allows the mimetic individual to 
chase his victim without being noticed. The junction between observation capacities and mimetic capacities is 
practiced in a successive way, which allows the improvement of these capacities. 

Bayesian Brain Theory 

The Bayesian theory of the brain in neuroscience is widely recognized when it comes to brain function. This theory 
briefly indicates that after a cerebral sensory observation (vision, smell, hearing, etc.), the predictive model of the 
brain generates, from the learned data, cerebral perspectives of the observed phenomenon or object. Note that in 
this case, the predictive model is managed by a sophisticated supercomputer (Human brain: 1011 neurons each 
linked to 104 others). Bayesian brain theory explains the cognitive abilities of the brain to work under 
circumstances of uncertainty to reach the optimum advocated by Bayesian methodologies [40]. It is assumed that 
neural structure retains inner probabilistic patterns revised by sensory information via neural processing [41]. 
Bayesian inference works at the level of cortical macrocircuits, which are structured according to a hierarchy that 
mirrors the observable object scenes around us. The brain encodes a model of these objects and makes predictions 
about their sensory input: predictive coding. The corresponding areas of brain activity will be near the top 
hierarchy. The links from the upper zones to the lower zones then convert a model describing the scenes. The 
lowest level predictions are compared to the sensory inputs and the prediction error is distributed up the hierarchy. 
This happens simultaneously at all hierarchical levels. Predictions are sent and prediction errors are returned in a 
dynamic process. The prediction error indicates that the actual model did not fully account for the input. The next 
level readjustment can increase the accuracy and reduce the prediction error [42,43] . It is clear that the observation-
prediction duo works in a real-time two-way matching process.  

• Matching Twins in Complex Procedures 

In this section, matched twins in complex procedures will be examined, which helps to expose the concept of 
digital twin. In section 4.1., we examined the role of the matching of estimated and actual parameters in automated 
procedures. This illustrated the need to improve the matching of virtual models to their real procedures. We have 
seen that the nature of a real system and the uncertainty of the emulation process often makes it difficult to build 
a realistic virtual system and that we need a compromise between estimation accuracy and speed adaptation in 
automated systems. These two remarks are related to the improvement of the matching of virtual models to their 
real procedures. Such an action depends on the qualities of the virtual model and its interaction with the real 
procedure. The quality of the virtual model is associated with its ability to account for the environmental 
phenomena involved in the actual procedure. The characteristic of the "real-virtual" link is connected to detection, 
processing and control capabilities. The weight of the matching improvement becomes particularly crucial in 
compound procedures where the complexity concerns the various incorporated components accounting for the 
physical phenomena involved (the notion of complexity will be discussed in the next paragraph). To handle such 
complex procedures, one can practice the Internet of Things (IoT) which intensely deliberates in the physical 
domain via direct real-time data collection, or Computer Aided Design (CAD), which focuses exclusively on 
digital territory. However, it is essential to temper and control the irregular and unnecessary behaviors that occur 
in these complex procedures. Achieving such a goal requires a matched observation-model twin practiced in the 
relevant procedure [44]. A consistent representation of such a matched twin is shown in Figure 2. Such a twin 
differs from both IoT and CAD by focusing on both the physical and digital spheres. This twin requires the practice 
of different skills mainly involving detection (observation side), calculation (model side) and the information and 
control link (between observation side and model side). Detection on the observation side concerns the various 
recognitions of the sensors. Model-side computation could involve simulation, optimization, design, diagnosis, 
prediction, and testing. These operations can use learned collected data in addition to sensor data. The link between 
the observation side and the model side is bidirectional. The observation part provides sensor measurements in 
processed form to the model part while the latter sends process and control information to the observation part. 
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Figure 2. Schematics of a real-time bidirectional matched observation-model twin in a complex procedure 
• Complex Systems 

Generally, in the so-called complex procedure, the complexity concerns the components and the physical 
phenomena involved. Complexity can be defined in terms of interactions [45]. These can be classified into three 
forms: simple, complicated and complex interactions. The former simply behaves in a direct or linear manner, 
complicated interactions are linear and loosely coupled while complex interactions with tightly coupled links 
would be characteristic of a complex system or procedure. Such a classification is reminiscent of the one mentioned 
previously in section 3.3, relating to the coupling of different phenomena. 

Coupling in a complex system involves its various components. This could represent an oversized model and we 
can use model reduction techniques, see e.g. [46], while preserving accuracy depending on the application 
concerned (modeling, design, optimization or online supervision).   

• Digital Twin Concept 

The twin described in the last section (Figure 2) corresponds to the Digital Twin DT. M. Grieves [44] first 
introduced this concept in 2002. It is distinguished by a beneficial two-way communication between the digital 
and physical spheres. The three components of a DT are a paired physical observable, a real-time replicated digital 
element, and their sensory, processing, control, and pairing links. The physical element dynamically adjusts its 
behavior in real time according to the recommendations made by the digital element. While the digital item 
correctly reproduces the real state of the territory of the physical product. Thus, DT offers an intelligent alliance 
of the physical and digital domains. Thus, in DT technology, physical observation and virtual modeling are 
interconnected in a reciprocal exchange in real time. The observed element corrects the virtual error and the virtual 
element corrects the observed sensory data. This iterative process leads to a more objective and intelligent 
association. The DT concept is mainly used for fault diagnosis, predictive maintenance, performance analysis and 
product design [47]. This concerns various fields and innovative industrial devices such as energy and utilities, 
aerospace and defense, automotive transport, machinery manufacturing, healthcare and consumer goods. 

Note that similar uses of the concept of DT existed [48] before its introduction in 2002 by Grieves [44]. As early 
as 1993, in "Mirror Worlds", David Gelernter evoked a similar concept, the possibilities of software models, which 
represent a portion of reality [49]. However, even before that, NASA used complex simulations to monitor 
spacecraft safety [50]; then came the unexpected explosion of the oxygen tank of the Apollo 13 mission in 1970 
[51]. Following this accident, the mission modified several high-fidelity simulators to adapt them to the real 
conditions of the damaged spacecraft and used them to land safely [52]. This was probably one of the first real 
applications of a DT. This involved several basic features of a DT, although it was not a familiar concept in 1970. 

• Examples of Applications of DT 

Given the huge number of publications on DT, and to illustrate the range of applications, from manufacturing to 
smart cities, we will provide several examples from different areas of this work. One of DT's most widely used 
businesses is industrial manufacturing and product design. For example, the pairing of physical and virtual 
products can be used for the iterative redesign of an existing product or for the creation of a new product. Such 
DT-based product design can guide manufacturers to support the product design process, see e.g. [53,54]. 
Additionally, the integration of manufacturing data and sensory data in the development of DT virtual products 
that can enhance cyber-physical manufacturing capabilities can be valuable [55]. Another activity of DT concerns 
predictive maintenance, which is used in many fields. In the context of industrial procedures, predictive 
maintenance has become an important concern; the main objective is to optimize the maintenance schedule by 
predicting system and process failures. Such an approach will result in a reduction in unplanned system downtime 
and severe outages. In addition, the advantages are the minimization of costs and the reduction of substitution of 
fundamental elements of the system, see e.g. [56-59]. Additionally, we can mention healthcare services using DT 
technology as an exciting and encouraging approach that can promote progress efforts in medical innovations and 
improve clinical and societal health outcomes [60,61]. In addition, DT's security business as Cyber DT designed 
for cybersecurity protection [62] and security of DT-based industrial automation and control systems [63]. Also in 
control, DT technology is used for application in control centers of electrical systems and in mechatronic systems 
[64]. Another activity concerns the application of DT technology in EV smart electric vehicles. This concerns 
various aspects such as autonomous navigation control, driver assistance systems, vehicle health monitoring, 
battery management systems, electronics and electric drive systems [65,66]. In addition to the mentioned examples 
of using DT, we can mention some innovative applications. The application of DT in the livestock sector to 
improve large-scale precision farming practices, machinery and equipment use, and the health and well-being of 
a wide variety of animals [48]. Moreover, the application of DT in smart cities to ensure smart aspects in real 
estate, transportation, construction, health system, building, home, transportation and parking [67]. 

5 Conclusions 
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The analysis, discussion and evaluation carried out in this contribution have brought to light the following points. 
Offline matching in the observation-theory link has proven effective in managing and governing elegant theories. 
We can synthesize the characters of this duo as follows, a mathematical theory simply needs observation to be 
credible and observation needs a theory to be universal allowing further research. Real-time pairing in the 
observation-modeling link governs natural phenomena and requires comprehensive models in the supervision of 
automated and complex physical procedures to behave in the most advantageous manner. The DT concept has 
shown a wide range of innovative applications with promising capabilities in various modern everyday uses.  
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