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Abstract/Résumé

This paper shows the useful combination of a gradient-based particle swarm optimization (GPSO) method with
a metamodeling process in order to save computation time for the design of a Wireless Power Transfer (WPT)
system for automotive applications. The goal of this analysis has been to investigate new configurations for
3F3 ferrite cores in an existing WPT system regarding both the coupling factor and the ferrite volumes. An
innovative gradient-based multi-objective optimization method has been coupled to an adaptive sampling algo-
rithm for Polynomial-Chaos Kriging (PCK) metamodeling.

Cet article vise à montrer l’utilisation de la meta-modélisation pour l’optimisation par essaims particulaires
avec gradient (GPSO). Le but est d’économiser du temps de calcul pour le design optimal d’un système de
transfert de puissance sans contact pour la recharge inductive des véhicules électriques. En partant d’un modèle
partiellement optimisé, la configuration des ferrites 3F3 a été analysée en fonction du facteur de couplage et du
coût de construction (proportionnel au volume de ferrites utilisé). L’optimisation multi-objectifs par GPSO a
été couplée à un algorithme adaptatif pour le calcul d’un métamodèle Polynôme Chaos-Krigeage.

1 Introduction

Metamodels have been initially developed to perform sensitivity analysis at a low computation cost. They are
widely used for various modeling applications, and are especially handy for trade-off optimization problems on
complex computational models. The main interest of using an accurate metamodel for optimization is its direct
analytical expression which can be called instead of the real model for computing many datapoints. In the field
of electromagnetics, many metamodel-based optimization have already been developed such as Kriging-based
optimization [1] or PCE-based optimization [2]. The novelty of the metamodel-based optimization presented
here consists in extracting the gradient of the cost function directly from its analytical expression. Indeed,
instead of calling the PCK predictor during the optimization process, the gradient is directly computed from
the meta-parameters, thus, saving a lot of computation time in the case of complex high-dimensional models.
The works aims at investigating new configurations for the design of 3F3 ferrite cores on an available WPT
system [3] which had not been done before.

2 Optimization problem

2.1 Optimization method

The considered surrogate model consists in a combination of a Polynomial Chaos Expansion (PCE) and a
Gaussian process (Kriging) : a Polynomial-Chaos Kriging (PCK) metamodel. An accurate predictor can be
computed from a given parameter space using a previously developed active learning algorithm, which combines
PCK with an adaptive sequential sampling method based on the quad-tree algorithm [4]
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The optimization is performed by the Gradient Particle Swarm Optimization (GPSO) which adds a local
gradient-based term to the motion equation of particles in the PSO optimization [5]. The gradient computation
is usually a heavy burden but thanks to the PCK predictor it can be performed easily. Indeed, the main
advantage of using a PCE-based metamodel is its direct analytical expression which allows an easy computation
of its gradient [6].

2.2 WPT model

The combination of an already developed active learning metamodelling algorithm with the aforementioned
GPSO optimization method has been used for finding an optimal design for the 3F3 ferrites of an existing WPT
system [3] (see figure 1). Thanks to this fast and accurate optimization method, this problem, never treated
before on such a WPT system, could be computed easily. The considered relevant parameters, displayed on
table 1, are the (xf , yf ) position of the ferrite along with its dimensions (wf , hf , lf ). Both ferrites are taken
symmetrical regarding (O, y, z).

Figure 1: WPT model for the optimisation problem with 3F3 ferrites cores and an optimized shielding structure

The objectives of the geometry optimization are to :

• Maximize: k =
M√
LRLT

the coupling factor between the transmitting coil (self-inductance LT ) and the

receiving coil (self-inductance LR) with M the mutual inductance

• Minimize: V = wf .hf .lf the ferrite volume used in the design

3 Results

3.1 Optimization

A prior global sensitivity analysis and single-objective optimization (maximizing k) has been conducted on
the metamodel, built with nsamples = 517 and a LOO ≃ 6.907 · 10−10. The results are displayed on table 1.
Due to the low influence of the size parameters on the model regarding the ferrite position, an evident factor
simplification has been made with xf and yf set to their nominal values for the multi-objective optimization.

Table 1: Optimized parameters for maximizing the coupling factor k with their Sobol’ indices (LOO ≃ 6.907 ·
10−10, nsamples = 517)

variable value ST description
wf 0.1167m 5.856 · 10−5 ferrite width
hf 0.0304m 7.004 · 10−5 ferrite height
lf 0.1760m 7.727 · 10−5 ferrite length
xf (∆x = 0) 0.2627m 0.881 x position of the ferrite
yf (∆y = 0) −0.0049m 0.161 y position of the ferrite

For the multi-objective optimization on the size parameters only (wf , hf , lf ) for the ferrite cores, an accurate
metamodel (nsamples = 35, LOO ≃ 3.698 · 10−5) has been built for an unidimensional output : the coupling
factor k. The two objectives are to minimize both 1−k and the ferrite volume V . The Pareto front is displayed
on figure 2. Due to convexity of the Pareto front, the knee point solution (k = 0.0950, V = 5.806 · 10−4m3,,
drawn in red on figure 2) has been chosen as the most optimal solution as it minimises the distance to the ideal
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point (0, 0) for both objectives. The corresponding parameters values and their Sobol’ indices are displayed on
table 2.

Table 2: Optimized parameters for maximizing the coupling factor k and minimizing the ferrite volume V with
their Sobol’ indices (LOO ≃ 3.698 · 10−5, nsamples = 35)

variable value ST description
wf 0.246m 0.876 ferrite width
hf 0.0102m 8.855 · 10−3 ferrite height
lf 0.234m 0.126 ferrite length
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Figure 2: Pareto front for the multi-objective optimiza-
tion to minimize the ferrite volume V and maximize the
coupling factor k

Figure 3: Percentage gain for the coupling factor k with
the optimized geometry from the coupling factor with
the nominal geometry k0 against the misalignments ∆x
and ∆y

3.2 Validation

Using the optimized ferrite geometry, for each possible misalignment (∆x,∆y), the resulting coupling factor
k(∆x,∆y) has been predicted along with its nominal value k0(∆x,∆y), using the active learning algorithm with

(∆x,∆y) ∈ [−0.25m, 0.25m]⊗[−0.5m, 0.5m]. The gain in percentage

(
k − k0
k0

)
from the nominal coupling factor

is displayed on figure 3. Over the wide domains of variations of ∆x and ∆y the percentage gain is ranging from
2% to 8% with an average value of 6.1%. Thanks to the optimization, the cost of 3F3 ferrites can be divided
by 2 on a practical system using the optimal set of parameters, while not diminishing, but slightly increasing
the WPT coupling factor.
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